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Diffusion Effects in Hypersonic Flows with a Ternary Mixture 

Bokhyun Yoon* and Maur iee  L. Rasmussen**  
(Received August 21, 1998) 

An evaluat ion  of  mu l t i - co mp o n en t  diffusion effects in hypersonic  flows is presented. A 

compar ison  is made  of  the results obta ined  from the common simplifying assumpt ion of  F ick '  

s law with the results ob ta ined  from the precise consti tut ive relat ions s temming from the kinetic 

theory of gases. To fix the ideas, the flow of  a ternary mixture past a flat plate is considered,  for 

which pressure diffusion is negligible. Whereas  the precise analysis  is more complicated,  the 

results for the mass- f rac t ion  d is t r ibut ion  can be signif icantly different from the cor responding  

s impler  analysis  s temming from Fick ' s  Law. 
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B* 
B ,  B~, 173 
d: 
Dm 
Da~ 

D~ 

f 
ha 

kB 
ma 

p 
q 

R 

Sc,, : A2/A1 Sc2 
: Defined in Eq. (21a) 

: Defined below Eq. (12b) t 

: A vo g a d ro ' s  number  T 

: B1/Bz u, v 
: Defined in Eq. (21b) 

: Defined below Eq. (12b) X~ 

: Diffusion vector for species a Y~ 

: Mean diffusion coefficient y *  

: M u l t i - c o m p o n e n t  mass-dif fus ion Yae, Yaw 

coefficient between species a and 

: Binary mass-di f fus ion coefficient W~ 

between species a and [3 a 

: M u l t i - c o m p o n e n t  thermal-di f fu-  

sion coefficient for species a ?" 

: Blasius function V 

: Specific en tha lpy  ['or species a /z 

: M a s s - d i f f u s i o n  flux vector for /z. 

species a p 

: Bol tzmann constant  p~ 

: Molecu la r  mass for species a a~ 

: Pressure a ~  

: Energy-d i f fus ion  flux vector co 

: Gas  constant  for mixture co. 
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.(2 

: Specific gas constant  for species a 

:Represen ta t i ve  Schmidt  numbers  

defined in Eqs. (17b, c) 

: T ime 

: Tempera ture  

: V e l o c i t y  components  in the x 

and y direct ion 

: Mole  fraction for species cr 

: Mass fraction for species a 

: Defined in Eqs. (24a, b, c) 

: Mass fractions of  species ce for the 

outer bounda ry  layer edge and 

wall  

: Molecu la r  weight for species a 

: YI~.- Ylw 
: Y2~- Y2w 
: l n / " ( 0 )  §  

: Sel f -s imi lar i ty  var iable  

: Viscosity of  mixture  

: Specific viscosity for species a 

: Density of  mixture 

: Specific densi ty for species a 

: Molecu la r  d iameter  of  species a 

: (ao+a~)/2 
: Defined in Eq. (22b) 

: Rate of  creat ion of  mass of  species 

a per unit  vo lume 

: Defined below Eq. (12b) 
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1. Introduction 

Most hypersonic flows (Yoon, 1996) involve 

mult i -component  mixtures, which can be treated 

as inert sometimes and reacting at other times, 

depending upon the situation. Various problems 

of interest stem from calculating the aerodynamic 

forces and moments on missiles and aircraft, 

calculating the reacting flow properties of propul- 

sion units, determining the missile signatures 

associated with mass injection, and other situa- 

tions. In virtually every C F D  calculation scheme, 

the mass-diffusion fluxes are approximated by 

Fick's law of diffusion, and thermal diffusion, 

pressure diffusion and forced diffusion are neg- 

lected. This approximation has not been sub- 

stantiated for hypersonic flows in general, and it 

has been taken as an article of faith based on 

low-speed applications. This study seeks to evalu- 

ate the use of  Fick 's  law by using the correct 

mult i -component  diffusion laws to calculate vari- 

ous flow problems and establish rational base- 

line comparisons. By this means, it can be demon- 

strated how different constitutive relations for the 

mass-diffusion flux vectors influence the results of  

hypersonic flow calculations for multi compo-  

nent mixtures. 

One avenue of approach would be to take a 

problem that has already been solved using Fick's 

law, and to solve the problem again using correct 

mul t i -component  diffusion. Many practical  

hypersonic flow problems can involve as many as 

seven species or more and must be handled by 

using one C F D  code or another. This can involve 

an elaborate numerical analysis, and such differ- 

ences that occur may be obscure and difficult to 

trace fundamental principles. 

A second avenue of approach is to sort out 

some of  the implications of mult i-component  

diffusion from a more basic analysis. The general 

diffusion laws, stemming from kinetic theory, are 

substantially more complicated than the Fick's 

law. Many essential features can be illustrated by 

using simple ternary mixture, and later on simple 

reaction models. With these restrictions, funda- 

mental hypersonic flow problems can be studied, 

such as the boundary layer flow past a flat plate 

and the flow structure of  a normal shock wave. By 

this means, some progress can be made analyti- 

cally, and general insight and methodologies can 

be established. Some properties of hypersonic 

flow fields can be determined together with impli- 

cations on wall friction and heat transfer effects. 

This study will present the background and gen- 

eral considerations for mass diffusion phenomena 

first, and then concentrate on the compressible 

boundary layer flow past a flat plate by means of 

a simple ternary mixture model. 

2. Background 

The equation of change for the mass of species 

ct can be expressed as 

DY~ . ~iv "~ t Z ~ D ~ - = w ~ - u  ] , ,  o~=1,2 . . . . .  N 

(1) 

where y~=--p,/p is the mass fraction of species a, 

p the mass density of the mixture, p ,  the mass 

density of species a, o)a the rate of creation of 

mass of species a per unit volume of mixture, f~ 

the mass-diffusion flux vector of species a, N the 

total number of species in the mixture, and D / D l  

the material derivative associated with the mass 

average velocity. Since 

~, y~------1 (2) 

mass conservation of the overall  mixture requires 

that 

N 

E2 o~o_--o (3) 
a = l  

;o O (4) 

The reaction rate a)~ and the mass-diffusion flux 

vector f .  need to be specified by some sort of 

constitutive relations. Typically, the mass-diffu- 

sion flux vector also enter into the constitutive 

relation for the energy-diffusion flux vector (see 

Eq, (9)).  

The Fick's law in terms of  the mass flux is 

classical and simple approximation for l ~ : 

f , = - p D ~ T Y , ,  a = l ,  2 . . . . .  N (5) 
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Here Dm is a mean diffusion coefficient, being the 
same for all species in order to satisfy Eqs. (2) 
and (4). For binary mixtures, Fick's law is theo- 
retically correct when the effects of pressure gradi- 

ents and temperature gradients are neglected. 
Thus Dm is a mean pseudo binary-diffusion co- 
efficient. For multi-component mixtures, Fick's 

law does not have an equivalent firm foundation 

as for binary mixtures, and Dm depends on the 
local composition as well as the temperature and 

pressure. Various empirical and semi-empirical 
relations have been used for D~(Rasmussen, 

1994 ; Kee, 1993) 
Fick's law is very commonly used not only 

because of its simplicity, but also because it 
presumably yields reasonably good results. How- 
ever, Dorrance (1962) states that Fick's law does 

not offer a general justification. In a recent two 
volumes of  Hypersonics, (Bertin, 1989), all the 

CFD (Computational Fluid Dynamics) papers 

that were cited there made use of Fick's law. The 
scant justification for using the Fick's law was 

given by Heimerl and Coffee (1982), but they 
were concerned only with low-speed laminar 
flames. Kee et al. (1993) encountered applica- 
tions in which approximate averaging schemes for 
the diffusion coefficient were inadequate, and 

they noted further that the ones they propose 
violate the conservation condition in Eq. (4). The 

significance of mass diffusion near stagnation 

points has been measured (Guy, 1975). It seems 
that a general evaluation of Fick's law, especially 
applied for hypersonic flows, is not available. 

3. General  Considerations 

The general representation of the mass-diffu- 
sion flux vectors stems from the kinetic theory of 

gases. These theories have been expounded in 

great detail by Chapman and Cowling (1952) 
and Hirschfelder et al. (1954). A recent textbook 
on multi-component mass transfer by Taylor and 
Krishna (1993) contains comprehensive mate- 
rials, but it does not deal with hypersonic flows. 
Refer to Rasmussen (1994) for discussions per- 

taining to hypersonic flow. 
From the kinetic theory of gases, the multi- 

component mass-diffusion vectors are expressed 

in terms of the diffusion vector ate: 

aT~=-VX~+(X~-Y~)Vlnp, 0,,:1, 2 . . . . .  N 
(6) 

where X~ is the mole fraction of species a and 
p is the mixture pressure. Effects of  concentration 

gradients and of pressure gradients always appear 
in this combination. The multi-component mass- 

diffusion vectors are now given by 

j = = ~ = I - ~ D ~ B d ~ -  D~v~71n T,  

a =  1, 2 . . . . .  N (7) 

Here, D ~  is the multi-component mass-diffusion 
coefficient and D~ r is the multi-component ther- 
mal-diffusion coefficient. The diffusion coeffi- 
cients D,~ and D r are not equal to the binary 

diffusion coefficient denoted by s The multi 
-component diffusion coefficients are instead 
complicated functions of the binary diffusion 

coefficients together with component concentra- 
tions. Thermal-diffusion coefficients are generally 
small, and being identically zero for Maxwellian 
molecules. Notice that the mass-diffusion vectors 
are linear combinations of the component concen- 
tration gradients and thus not necessarily col- 
linear with the concentration gradient of their 

own corresponding species, as for Fick's law. The 
diffusion constitutive equation (7) is not at all 
obvious, and yet it can be regarded as one of the 

prominent achievements of the kinetic theory of 

gases. 
The multi-component diffusion coefficient D~p 

is difficult to evaluate when there are a large 
number of components (say, four or more). This 

difficulty can be overcome when Eq. (7) is invert- 
ed so that the diffusion vector aT~ is expressed in 

terms of the mass-diffusion vector f ,  : 

f f o = l  ~ X~Xp ( f p ~..) Vln T ~. X~X~ 

.D J_ D~"~ 1 2, N (8) y~ y~ ] ' a= ' "", 

This equation, sometimes, called as the general- 
ized Stefan-Maxwell equation, is expressed in 

terms of the binary-diffusion coefficient /)ap 
rather than the multi-component coefficient 
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D~,  The binary-diffusion coefficient /),~ Can be 

evaluated for each pair  of mixture components by 

means of kinetic-theory formulas. 

The mass-diffusion vector also appears in the 

energy equation by means of the constitutive 

relation for the energy-diffusion flux vector ~ : 

# . . . .  k V T -  ~ h , j ~ +  R~X~ 

D": {L 

Here k is the thermal conductivity for the mix- 

ture, ha the specific enthalpy for species a, and R ,  

the specific gas constant for species a. When there 

is no mass diffusion, Eq. (9) reduces to what is 

normally called the heat-flux vector and Fourier 's  

law. Whatever constitutive relation for the mass- 

diffusion vector may be used, it can significantly 

affect the energetics of a diffusion problem. 

4. Simple Ternary Mixture  

Some basic results can be sorted out by starting 

with a simple ternary and simple reaction models. 

A simple model that bears some relation to reality 

is that of dissociating oxygen in the presence of a 

neutral species, say nitrogen. The ternary mixture 

is thus composed of  02, O, and N2, which we refer 

to as species 1, 2, and 3, respectively, for 

computational purposes. Their physical prop- 

erties are given in Appendix. It could be further 

supposed that the oxygen non-equi l ibr ium disso- 

ciation is governed by the model for the ideal 

disassociating gas (Rasmussen, 1994). For the 

ternary mixture, the mult i-component  diffusion 

coefficient D,~ can be determined explicitly in 

terms of separate binary diffusion coefficients and 

the mixture composition (Rasmussen, 1994). 

D ~  + RoYoD,,+ R,Y, fSo,+R,Y,~o,] 
(10) 

where a, ~, and ). are non-repeated permutations 

of 1, 2, and 3. The mass-diffusion flux vectors 

thus appear as 

: -  ~ F S  , .  ~ ,  Y~., ~ l  ( l l a )  

(lib) 

: Y , , .  ( , , c )  

with thermal diffusion omitted, (Note that D~x= 

D22=D33=0). Treating Y~, Y2 and p as indepen- 

dent variables, we can get for f l  and f2 

f l -  - oEA1V Y~ +A2V Y2+AsVInp] 
(12a) 

f~= -pEB1V Y~ + B2V ~ + BaVlnp] (12b) 

where 

Al=-- D13 + al Yz, 
1 

a,---K;..{ (RI - R~) O~2- (R1 - R.,) D,3}, 

A _ _ R  ( X I -  Y1) 
3 = RIR3 D18 

R2(X2-  Y'~) (R2D,s- R~D,2) 
-F RIR2R3 

b~=- ~ 2 {  ( R , , -  R~) D~, - ( ~ - R1) D2a}, 

Ba=-- R 2 ( X 2 -  I"2) D.,.~ 
R2R3 

-~ R~R.~R:~ 
~=- Y1R1D23 + Y~R.,D~3 + Y~R~Dv~. 

This model is simple enough to apply to classical 

hypersonic flow problems, such as the boundary 

layer flow on a flat plale, a normal shock wave, 

the s tagnat ion-point  flow near a blunt nose, and 

so on. We consider here the case of the compress- 

ible boundary layer flow only. 

5. Boundary Layer Flow 
on a Flat  P late  

5.1 Basic formulation 

We shall make some simplifying assumptions 

here for the compressible boundary layer flow on 

a flat plate. The pressure diffusion is negligible 

since the pressure is constant across the boundary 

layer. Moreover, we shall ignore thermal diffu- 

sion for the simplicity. For  a ternary mixture, we 
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suppose that the mass fractions Y~ and Y2 are 

independent, and that Y8 can be obtained from Y~ 
= 1 - Y~-- ~ .  Likewise, the mass-diffusion fluxes 

f l  and f2 are treated as independent and j '~= 
- - f z - - f 2 .  Then there are two coupled indepen- 
dent equations of change for 111 and Y2: 

8Y~+ 8Y~ 
ou = a x -  ov 3y 

. , 8 [ - - B Y ,  : . 8Y2'~ 
�9 ) (13a) 

8Y2, 8Y2 
OU~x ~- Ov 8y 

c~ + 8 {  B O Y~ + B A Y 2 \  = ,   -t,o p (13b) 

When A2=-0 and B ~ 0 ,  Eqs. (13a, b) essentially 
reduce to those obtained from Fick's law. It is our 
purpose here to illustrate the differences between 

the results stemming from Eqs. (13a, b) and the 
corresponding results associated with Fick's law 
(that is, essentially setting A 2 = B ~ = 0  in Eqs. 

(13a, b)). For a sophisticated boundary layer 
treatment involving four species and the use of 

Eick's law, refer to Inger (1964). For the binary 
diffusion coefficient in a ternary mixture, we 

make use of the hard-sphere billiard-ball model 
(Rasmussen, 1994). 

/7,,,~= 3 I }l/z ~ 2 k~ (mo + m~) R T~2/p 
zon~m~ R~ Y~ + R~ Y, 

(14) 

where 

m~, ma=molecular  masses, 
d,, d~=molecular diameters, 

a ~ =  (cry+ a~)/2, 
k~=Boltzmann constant, 

R. = kn/ m.  =specific gas constant, 

R =  Y~R,+ Y~R~+ ~R~, 
p= pRT.  

With these assumptions, we can examine varia- 

tions of ratios A ~ A 2 / A ~  and B=-B1/Bz with 
respect to the mass fraction Y~. Note that A and 

B are independent on temperature and pressure, 
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since both of them cancel out. This can be easily 

seen from the definitions of A and B with Eq. 

(14). Figure 1 shows the variation of A - - A 2 / A ,  
and B=--BffB., with respect to Y~ for various Y2' 

s. It can be found from Fig. 1 that for particular 

values of mass fraction, A and B can differ 

significantly from zero. 

In order to get boundary- layer  equations, we 

introduce a wel l -known similarity coordinate 

transformation : 

(x) = fxt)wgwuedx (15a) 8 
_ U e  /'Y d (15b) 7 (x, y) = ~ A  o y 

and the Blasius function f such as : 

....... U .... (15c) 
u~ --  87 

where the subscripts ~ and w refer to the external- 

stream and the wall boundary. 

Then Eqs. (13a, b) become : 

@ l sc, t 87 87 / J 8,~ 
( Of OY~ ? f  OY~'~ 2?05, (16a) 

=2#\87 87 8~ ~ / -  ou~o~uw 
0 , ,~C_C ( OYz + B  OY~ ) I + f O Y 2  

&7 tSc. , \  87 8zl /J 8":7 
Of 8Y2 a f  OY2'~_ 2~o~z 

= 2 ~  87 8$ &e Or] / t)u~owuw 
(16b) 

where ,, (17a, b,c> 

Here Sc, and Sc2 are the representative Schmidt 

numbers, and C is the Chapman-Rubes in  param- 

eter. The Schmidt numbers Sc~ and Sc2 (corre- 

sponding to 0., and O in mixture with N2) are 

plot ted as functions of  Y~ for various Yz's in 

Fig. 2. The Schmidt numbers can vary substan- 

tially with composition and can have substantial- 

ly different values. The viscosity ~t in the defini- 

tion of  Schmidt numbers was calculated on the 

basis of Wilke's  formula (see Appendix) .  The 

Blasius function f ( 7 )  in Eqs (16a, b) is the 

solution to the well known Blasius equation f "  
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+ f f " = 0 .  
We can proceed further by utilizing the bound- 

ary layer similarity ( 3 /3~=0)  in a conventional 
way (Rasmussen, 1994 ; Dorrance, 1962 ; Inger, 
1964), setting C = l ,  treating A and B as con- 
stants, and using constant representative Schmidt 
numbers. For the flow with no chemical reactions 
(o j~=0) ,  the partial differential equations of Eqs. 
(16a, b) reduce to the following ordinary differ- 
ential equations : 

d2Yl . ~ d 2 Y 2 _  ~ ~dY1 ,, 

d ~Y;'z , ~ d  2Y1 , o .dY2 0 
d~]. 2 t - ~ - •  (18b) 

To obtain approximate solutions analytically by 
means of the perturbation method, the Eqs. (18a, 
b) can be rewritten as : 

1 j ..... 

A d2gz (19a) 
de 

d'~Y2 ~_ .dY2 [ l 1 ~ B 
. . . .  t, Sc2 

d2 Y~ (19b) 
d S -  

Again, when A = B = 0 ,  these reduce to the well- 
known results obtained for Fick's law, with Sc~ 
and Sc2 taken as equal. The subsequent analysis 
is based on the solutions of Eqs. (19a, b) for 

various values of A,  B,  Sc~, and Sc~ together 
with specified boundary conditions. It will facili- 
tate the discussion to obtain an approximate 
solution. This can be done by taking A and B as 
small, and Sca and Sc2 as only sightly different 
from unity. When this is done, the right-hand 
sides of Eqs. (19a, b) are small, and thus we can 
use the perturbation method for approximate 
solutions. The base equations for IEqs. (19a, b) 
reduce to the Blasius equation. When the base 
solutions are substituted into the right-hand 
sides, the following first-approximations can be 
obtained : 

f~ + 1.103f'] (20a) Y~ - Y~ . = f ' - A *  [ fqn f "  +..~- 
Ya,-  Y~ 

Y ~ -  Y~w f ' l n f " +  +l .103f '  (20b) 

where 

When 
Fick's 

1 1 = 

( 1 ) ( 2 1 b )  B*--- B ( E e -  Bw) l _  S=~ 
Sc2 ( Y ~ -  �89 

A = B = 0 ,  the results reduce to those for 

law (with Sc j=  Sc2). 

5.2 Boundary conditions 
The boundary conditions that will be consid- 

ered in the subsequent analysis specify that nitro- 
gen N2 and oxygen Oz are neutral species, and the 
mass-diffusion flux fa is thus zero at the wall. It 
follows that f~+ f 2 = o  at the wall. it is supposed 
that the wall is arbitrarily catalytic for the pur- 
poses of numerical example, and f l  and f2 are 
not separately zero accordingly. Thus, the only 
chemical reactions that occur are at the wall 
between species 1 and 2 (the dissociation-associa- 
tion between 02 and O, respectively). At the wall, 
therefore, it follows from Eqs. (12a, b) that 

Y~' (0) = - co Y[ (0) (22a) 

where 

At  + Bl Sc2 + BScl  (22b) 
co = A2 + B2 - Scl + A Sc2 

The condition of Eq. (22a) must be enforced in 
the integration of the coupled equations (19a, b). 

The two second-order coupled equations (19a, 
b) require three boundary conditions, in this case 
they are to be specified in terms of Y~, Y~w, and 
Y2w. Only three of these can be specified indepen- 

dently, and the fourth must be determined. We 
shall arbitrarily select Y~e, Y~w, and Y2w. And 
then Y~e is to be determined. An approximation 
that elucidates above considerations can be 
obtained by means of the approximate solutions, 
Eqs. (20a, b). Evaluating the derivatives of II1 
and Y'z at the wall with Eq. (22a) leads to the 

relation between a ~  Yle-  Y~w and 13 = Y2e 

-r2w] 

where ) ,~1nf ' (0 )+1 .103=0.347 .  Thus, when 
Y~, Ylw, and Yzw are specified, Y2e can be 
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determined. Note that Eq. (23) is strictly valid 

when A and t3 are small, and Scl and Sc2 are 

near unity. 
The results are cast in terms of the functions 

Y~- Y~w 
Y : -  Y ~ -  Y~o 

Y.~- Y~w 
Y : -  � 8 9  Y~w 

Y3- Y~w (24a, b, c) 
Y : ~  Y ~ -  Y~w 

all of which vary between zero at the wall and 

unity at the free stream. It can be shown that Y3* 

is related to Y~* and Y2* by 

y :  = aY,* +/3�89 (25) 
a + f l  

Eqs. (20a, b) can be used to obtain an explicit 

approximation for Y: .  

5.3 Fiek's law 
The results for Fick's  law, stemming from Eq. 

(5), can be obtained by setting A = B = 0  and Scl 
=Sc2--Scm in Eqs. (19a, b). Since the resulting 

diffusion equations are the same, solutions are the 

same, that is, YI* (r])"- r2* (;7). Also, Eqs. (22a, 

b) yield co=l  and Y2 ' (0)=-I i l1 ' (0) .  It follows 

from Eq. (23) t h a t / 3 =  - a, and thus Eq. (25) for 

the neutral species 23* is indeterminate. The 

result is that the mass fraction for the neutral 

species is a constant, that is, Y~= Y3e= Y3w. These 

results are in direct contrast to previous results for 

the correct ternary-mixture. Since the F ick ' s - law 

problem is not obtained from the correct multi-  

component analysis by a s tep-by-step rational 

procedure, there is no definitive means for deter- 

mining a single average diffusion coefficient Dm 

and Schmidt number SCm=-,u/pDm. A common 

approximation is to use Wilke's  formula, as ex- 

plained in Appendix. Presumably, Wilke's  for- 

mula is sensible when one of the species is quite 

different from the others such that a pseudo- 

binary mixture is assumed, with one component 

being the distinct species and the other compo- 

nent being an average of the remaining species. In 

our example, this would amount to species O 

for one component and an average of  02 and N2 

for the other pseudo component. In this case, we 

would refer to Dm as D2~, in Wilke's formula. A 

constant average value of Scm will be used for 

further calculations. 

6. N u m e r i c a l  R e s u l t s  

The coupled diffusion equations (19a, b) were 

integrated numerically by means of  a Runge- 

Kutta scheme with constant values of A,  B, S c ,  
and Sc2 which were estimated average values 

across the boundary layer. We will consider the 

two cases as in Table 1. The result was Y2e= 

0.034 for Case 1, Y2e=0.1 for Case 2, and Y2e = 

0.02 for Fick's law, for both Case 1 and Case 2. 

Figures 3a, b and c show Y~*, Y.~*, ~* plotted as 

a function of ;7 for Case 1. The results Y~*= Y:  

for Fick's law with Scm=0.37 are also shown in 

Figures 3a and b together with the curves 111"= 

Y.~* = f ' ( z ] )  which hold for Scm=l.  The curve for 

the exact result lies between the F ick ' s - law curves 

for ~*, but the exact curve for Y2* lies above the 

two Fick ' s - law curves. The exact curve for the 

neutral species ~* shows an overshoot behavior 

in Fig. lc. The F ick ' s - law result is that Y~-~ Y3e 

= y3w=const. The curve for the Blasius velocity 

profile i f(r])  is shown in Figs 3, 4 for a reference. 

Corresponding results for the gradients Y~*', ~*' ,  

Y~*' are shown in Figs 4a, b and c for Case 1 in 

Table 1. The exact result for Yx*' lies between the 

F ick ' s - law curve and the curve for f " ,  whereas 

the exact curve for 22*' lies outside the two 

Fick ' s - law curves for Scm=0.37 and Sc,, = 1. The 

exact curve for the neutral component Y3*', 

shown in Fig. 5c, has an overshoot behavior. The 

curve for Fick's  law is actually indeterminant 

since ~ e  = Y3w, but it is shown as the curve I13"/ 

( ~ e - - ~ w )  .=--0 since Y~*'=0. Differences in the 

results for Case 1 and Case 2 are shown in Figs. 

5a, b and c. The curves for Y~* are nearly the 

same as Fig. 5a, whereas the curves for ~* are 

Table I Numerical data for two cases (Case 1 and 

Case 2) 

Case A B Sol Sc2 YI, Y,w Y~w 

Case l -0.63 -0.054 0.81 0.27 0.20 0.18 0.04 

Case 2 -0.39 -0.034 0.76 0.36 0.20 0.05 0.17 
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Fig. 5 Comparison of Case 1 and Case 2 for mass 
fraction. 

somewhat different. Curves for the neutral species 

Y3* in Fig. 5c show an overshoot behavior, but 
are distinctly different. The Fick's-law results are 

the same as before since the profile functions Y~* 

and Y2* depend only on the Schmidt number Scm. 

7. Concluding Remarks 

The mass-diffusion problem for a ternary 

mixture within a compressible boundary layer on 
a flat plate has been formulated using the exact 

constitutive relations stemming from the kinetic 
theory of gases. Average constant diffusion coeffi- 
cients were assumed so that the salient features of  

the ternary-mixture problem could more easily be 
perceived and calculated, and comparisons were 

made with the results obtained for the commonly- 

used assumption of  Fick's-law of diffusion. The 
difference in results for the mass-fraction profiles 

illustrates the inadequacy of  the Fick's law analy- 

sis, in spite of its simplicity. These results suggest 
that chemical reactions and the heat transfer may 
be in significant error when analyzed within 
framework of Fick's law of diffusion. 
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Appendix 

Physical  Properties : 

Properties for O z ( a : l ) ,  O ( a = 2 ) ,  N2(a 
=3) are molecular masses, 

where 

m,,= A~-, a = l ,  2, 3, 

Wa=molecular weight [g(gram mole)-X], 
Ao=Avogadro 's  number, 
a1=3.62 • 10-Scm, 
6z= 1.46• 10-Scm, 

0-3=3.76• 10-Scm. 

Viscosity for Mixture  : 
The approximation for viscosity according to 

Wilke (Rasmussen, 1994) is, 

~' X~ 
/ z=~]  N .. . . . .  , 

~ 2] X~tD~ 
#=1 

where ,u ~ ~- -1-~a ~ z c  

wo ~.1,2r +(uo~1,7 w~,,,] +~; )  [1 ~ /  ~woJ j 
Mean Binary Diffusion Coefficient : 
The average diffusion coefficient for a ternary 

mixture for use in Fick's law, according to Wilke 
(Rasmussen, 1994), is 

1-X.~ 
Dm= D2m= Xt  Xs " 


